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Abstract. A microscopic heat engine is modeled as a Brownian particle in a sawtooth potential (with load)
moving through a highly viscous medium driven by the thermal kick it gets from alternately placed hot
and cold heat reservoirs. We found closed form expression for the current as a function of the parameters
characterizing the model. Depending on the values these model parameters take, the engine is also found
to function as a refrigerator. Expressions for the efficiency as well as for the refrigerator performance are
also reported. Study of how these quantities depend on the model parameters enabled us in identifying
the points in the parameter space where the engine performs with maximum power and with optimized
efficiency. The corresponding efficiencies of the engine are then compared with those of the endoreversible
and Carnot engines.

PACS. 05.40.Jc Brownian motion – 05.60.-k Transport processes – 05.70.-a Thermodynamics

Now-a-days there is much interest in the study of micro-
scopic engines. One aspect is the need to have microscopic
engines in order to utilize energy resources available at the
microscopic scale. The other aspect is the trend in minia-
turization of devices demanding tiny engines that operate
at the same scale. During the past decade or so, study
of how motor proteins function has given us a guide as
to how man-made molecular engines should be designed
and constructed [1,2]. We still have a few theoretical is-
sues about microscopic engines that should be addressed
in detail.

One of the important points to be addressed about
engines is their energetics. Recently, there are studies on
the energetics of different kinds of microscopic engines [3].
Any task such an engine performs, including translocating
chemicals through a viscous medium with finite velocity,
costs energy. In order to find out how efficient such an
engine is, one has to generalize the definition of efficiency.
This is what Derényi et al. did in their crucial paper on
generalized efficiency [4] which was originally proposed by
Jülicher et al. [5]. Another issue of how an engine oper-
ates is whether a fastest transporting velocity exists under
a given condition. Such fast transport is at the expense
of consuming more energy and implying less efficiency. A
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compromise between fast transport and energy cost may
lead to an optimized efficiency. Herńandez et al. recently
came up with a unified optimization method for doing ex-
actly this [6].

The aim of this paper is to explore the performance
of a microscopic (or Brownian) heat engine under various
conditions of practical interest such as maximum power
and optimized efficiency.

The idea of a Brownian heat engine working due to
nonuniform temperature first came up with the works of
Büttiker [7], van Kampen [8], and Landauer [9] while they
were involved in exposing the significance of the now in-
fluential papers of Landauer on blowtorch effect [10,11].
Millonas studied the kinetics of a heat engine, which
he called as “information engine”, relating it to the
underlying microscopic thermodynamics [12]. Following
Büttiker’s work, Matsuo and Sasa [13] took a Brownian
heat engine as an example to show that it acts as a Carnot
engine at quasistatic limit. Derényi and Astumian [14],
after analyzing the details of heat flow in a Brownian
heat engine, found that its efficiency can, in principle, ap-
proach that of a Carnot engine. The same group later
used a model Brownian heat engine as an example to ap-
ply their newly introduced definition of generalized effi-
ciency and find its implications [4]. Recently, Hondou and
Sekimoto [15] claimed that such a heat engine cannot at-
tain Carnot efficiency due to inevitable irreversible heat
flow over the temperature boundary.
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Fig. 1. Plot of the sawtooth potential in the presence of
constant external load. The temperature profile is shown above
the potential profile.

All these recent works either addressed how a
Brownian heat engine behaves in the quasistatic limit or
did not deal with its energetics. Instead of limiting our-
selves to an issue of purely theoretical interest like qua-
sistatic limit, we would like to take an exactly solvable
model from which we can extract information of practical
interest. Not only will we be dealing with the quasistatic
limit but with the general characteristics of real engines
performing tasks either at maximum rate or at optimized
efficiency or otherwise. Even though the model is simple,
the results we get are of general significance not limited
to the model.

The model consists of a Brownian particle moving in
a sawtooth potential with an external load where the vis-
cous medium is alternately in contact with hot and cold
heat reservoirs along the space (or reaction) coordinate.
The shape of a single sawtooth potential, Us(x), located
around x = 0 is described by

Us(x) =




U0

(
x

L1
+ 1
)

, if −L1 ≤ x < 0;

U0

(
−x
L2

+ 1
)

, if 0 ≤ x < L2.

The potential corresponding to the external load is linear,
fx, where f is the load. The temperature profile, T (x),
within the interval −L1 ≤ x < L2 is described by

T (x) =

{
Th, if −L1 ≤ x < 0;

Tc, if 0 ≤ x < L2.

Both Us(x) and T (x) are taken to have the same period
such that Us(x + L) = Us(x) and T (x + L) = T (x) where
L = L1 + L2. Note that the left side of each sawtooth
from its barrier top overlaps with the hot region of the
medium while the right side overlaps with the cold region.
The sawtooth potential with the load, U(x) = Us(x)+fx,
and the temperature profile, T (x), are shown in Figure 1.

From practical point of view, the size of such micro-
scopic heat engine is limited by how small in size tem-
perature gradients can be. Since temperature gradients of
micron size can be produced [5], the size of such an engine
could be as small as few microns.

Due to the presence of the hot and cold regions
within each sawtooth potential and the external load, the
Brownian particle will generally be driven unidirectionally
and attain a steady state current, J , whose magnitude
and direction depend upon the quantities characterizing
the model. It has been found that the dynamic equation
governing the Brownian particle in inhomogeneous media
depends on the specific environment to which the particle
is exposed [16,17]. For our case, we take the inhomoge-
neous medium to be highly viscous and its corresponding
dynamic equation takes a specific form of Smoluchowski
equation first derived by Sancho et al. [18] and later by
van Kampen [8] and by Jayannavar and Mahato [19]:

∂

∂t
(P (x, t)) =

∂

∂x

[
1

γ(x)

(
U ′(x)P +

∂

∂x
(T (x)P )

)]
, (1)

where P = P (x, t) is the probability density of finding
the particle at position x at time t, U ′(x) = dU(x)/dx,
and γ(x) is the coefficient of friction at position x.
Boltzmann’s constant, kB, is taken to be unity. The con-
stant current at steady state is given by

J = − 1
γ(x)

[
U ′(x)Pss(x) +

d

dx
(T (x)Pss(x))

]
, (2)

where Pss(x) is the steady state probability density at
position x. Using periodic boundary condition, Pss(x +
L) = Pss(x), and taking coefficient of friction the same
throughout the medium, we get a closed form expression
for J for our potential and temperature profiles [20]:

J =
−F

G1G2 + HF
, (3)

where F , G1 and G2 are

F = ea−b − 1,

G1 =
L1

aTh

(
1 − e−a

)
+
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,
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b
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(
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)
. (4)

On the other hand, H can be put as a sum of three terms:
A + B + C, where

A =
γ

Th

(
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a

)2

(a + e−a − 1),

B =
γL1L2

abTc
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(
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)2

(eb − 1 − b). (5)

Note that a = (U0 + fL1)/Th and b = (U0 − fL2)/Tc

in equations (6) and (7). For the case when there is no
load (f = 0) and L2 = L1, the current takes a simple
expression given by

J =
1

2γ(Th + Tc)
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)2
(
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Note that this current is a resultant of currents to the
right and to the left; i.e. J = J+ − J−.

One can clearly see that the model acts as a heat en-
gine when the current is to the right. The particle under-
goes cyclic motion wherein during each cycle it is first in
contact with the hot region of width L1 and then with
the cold region of width L2. We take account of energy
flows between the two regions neglecting energy trans-
fer via kinetic energy due to the particle’s recrossing of
the boundary between the regions [4,14]. As the particle
moves through the hot region it absorbs energy, Qh, which
will enable it not only to climb up the potential (U0+fL1)
but also acquire energy γvL1 (v being the particle’s aver-
age drift velocity and equal to J(L1 + L2)) to overcome
the region’s viscous drag force so that

Qh = U0 + (γv + f)L1. (7)

On the other hand, the cold region will absorb energy as
the particle moves down the potential hill while at the
same time lose some energy due to the drag force in the
region. Therefore, the net heat, Qc, absorbed by the cold
region will be

Qc = U0 − (γv + f)L2. (8)

The net work, W , done by the engine in one cycle will
then be the difference between Qh and Qc so that

W = (γv + f)(L1 + L2). (9)

Note that the dissipation energy via friction is minimum
since the particle’s motion, determined globally, is uni-
form. The term (γv + f) appearing in the above three
expressions (Eqs. (7–9)) can then be taken as generalized
load (or external forces as in [5]) so that the generalized
efficiency, η, as suggested by Derényi et al. [4] will be
given by

η =
W

Qh
=

(γv + f)(L1 + L2)
U0 + (γv + f)L1

. (10)

If, on the other hand, the load is large enough along with
appropriately chosen other quantities then the current will
be in the reverse direction in which case the load does
work of amount WL = f(L1 + L2) in one cycle forc-
ing heat to be extracted from the cold region of amount
Qc = U0 − (γv + f)L2. Under this condition the engine
acts as a refrigerator. This will then lead us to a defini-
tion of generalized coefficient of performance (COP) of the
refrigerator, Pref , which is given by

Pref =
Qc

WL
=

U0 − (γv + f)L2

f(L1 + L2)
. (11)

The condition at which the current changes its direction
is the boundary demarcating the domain of operation of
the engine as a refrigerator from that as a heat engine. In
general, this condition is satisfied when

f =
U0(Th − Tc)
L1Tc + L2Th

. (12)

Fig. 2. (a) Plot of j versus λ for τ = 1, � = 2 and u = 4. (b)
Plot of j versus u for τ = 1, � = 2 and λ = 0.4.

It is worth noting that the magnitude of the load at this
point of zero current is exactly equal to what is usually
called the stall force for molecular engines [5,21]. When
we evaluate the expressions for both η and Pref as we ap-
proach this boundary, we analytically find that they are
exactly equal to the values for efficiency of the Carnot en-
gine and for COP of the Carnot refrigerator, respectively:

lim
J→0+

η =
Th − Tc

Th
and lim

J→0−
Pref =

Tc

Th − Tc
. Hence, this

boundary at which current is zero corresponds to the qua-
sistatic limit be it from the heat engine side or from the
refrigerator side. Only for this quasistatic limit (v → 0)
will the heat engine operate reversibly, i.e., the entropy
production is zero. This result agrees with the comment
given by Jülicher et al. [5]. However, the derivation of
equation (10) of Derényi et al. [4] and its implications
do not hold for a heat engine delivering a finite task in a
finite time.

We next explore how current, efficiency and COP of
the model depend on some of the quantities characteriz-
ing it. In general, the quantities characterizing the model
are U0, L1, L2, f , Tc and Th. We scale U0, L2, Th and f
such that u = U0/Tc, � = L2/L1, τ = (Th/Tc) − 1, and
λ = fL1/Tc. Hence, we have four parameters u, �, τ and λ
characterizing the model for a given Tc and L1. We also
scale current such that j = J/J0, where J0 = Tc/(γL2

1).
Figure 2a is a plot of the scaled current, j, versus scaled
load, λ. It shows that the engine works as a heat engine
when the load value is less than the stall force (λ = 0.8
in this case) and as a refrigerator when the load is larger
than this value. One can also see these two domains of the
engine by plotting j as a function of u as shown in Fig-
ure 2b. Note that when the model works as a heat engine
there is a finite u at which the current is maximum. This
corresponds to the point in the parameter space at which
the engine operates with maximum power.

When we plot the efficiency, η, versus λ within the
domain where the model works as a heat engine, we find
that it increases linearly with increase in λ attaining its
maximum value (Carnot efficiency) at the stall force (see
Fig. 3a). On the other hand, Figure 3b shows plot of Pref

versus λ which starts from its maximum value (COP of
Carnot refrigerator) at the stall force and decreases fast
as we increase the load.

Let us now compare the efficiency of our engine with
that of the so-called endoreversible engine when both op-
erate with maximum power. Curzon and Ahlborn [22,23]
took an endoreversible engine that exchanges heat lin-
early at finite rate with the two heat reservoirs and found
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Fig. 3. (a) Plot of η versus λ for τ = 1, � = 2 and u = 4.
(b) Plot of Pref versus λ for τ = 1, � = 2 and u = 4.
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Fig. 4. Plots of ηCA, ηMP , ηOPT and ηCAR versus τ , where
the model engine is put to function at f = 0 and � = 2 while u
is fixed depending on whether it is working at either maximum
power or optimized efficiency.

its efficiency at maximum power, ηCA, to be equal to
1 −√(Tc/Th). Figure 4 gives plots comparing ηCA with
that of the efficiency of our engine when it also operates
with maximum power, ηMP , for different values of τ . The
plots show that the two results are reasonably close to
each other for small τ with ηCA being slightly smaller
than ηMP . The values of the two efficiencies coincide
at a finite value of τ and ηCA progressively gets larger
than that of ηMP for higher values of τ and ultimately
approaches that of Carnot efficiency, i.e. 100 percent as
τ → ∞. For the particular asymmetric (� = 2) sawtooth
potential considered here, we have semi-analytically found
that the maximum value ηMP can take (i.e. when τ → ∞)
is very close to 57.75 percent. From the behavior of the two
efficiencies, we can conclude that the expression for ηCA

is of limited significance as it is derived from simple as-
sumption while ηMP is general and works for the entire
range in the allowed parameter space.

We would further like to compare Carnot efficiency,
ηCAR, with what is called optimized efficiency, ηOPT , by
Herńandez et al. [6]. This optimized efficiency is the effi-
ciency at the point of operation of an engine where com-
petition between energy cost and fast transport is com-
promised. We briefly summarize the method Herńandez
et al. [6] used to get ηOPT . When the engine operates with
finite time the amount of work, W , it delivers per cycle is
such that it lies between the maximum, Wmax, and mini-
mum, Wmin, amount of work that can be extracted from
the engine: Wmin ≤ W ≤ Wmax. They defined two quan-

Fig. 5. Plot of Ω versus u for f = 0, � = 2 and τ = 1.

tities: effective work We = W − Wmin and noneffective
work Wne = Wmax −W and introduced a function, Ω, to
be optimized to be equal to the difference between these
quantities. For our engine (since Wmin = 0) this function
is given by

Ω = 2W −
(

τ

1 + τ

)
Qh. (13)

Figure 5 shows plot of Ω versus u in which the function
has indeed an optimum at a finite value of u. The effi-
ciency of the engine when it operates at this particular
point in the parameter space is what we call as optimized
efficiency, ηOPT . For the sake of comparison, we plot ηOPT

along with the corresponding Carnot efficiency, ηCAR, in
the same figure (Fig. 4) as we did for the other efficien-
cies. The plots clearly show that ηOPT always lies between
the ηCAR and ηMP . One can therefore say that the opera-
tion of the engine at optimized efficiency is indeed a com-
promise between fast transport and energy cost. Lastly,
we have also semi-analytically found that the maximum
value ηOPT can take (for the particular case considered)
is very close to 75.73 percent and occurs when τ → ∞.

In this paper, we found a closed form expression for
the steady state current of a Brownian heat engine. This
enabled us to directly quantify the recently introduced
generalized efficiency [4] as well as the generalized COP
we introduced. We verified that both these quantities took
the correct values at the quasistatic limits. The values
we get for the efficiency of the engine at various points
in the parameter space where the engine operates with
maximum power are new results generally different from
those values one gets by using the finite-rate linear heat
exchange assumption of Curzon and Ahlborn [22]. Opti-
mization criteria [6] has been implemented to determine
the set of points in the parameter space at which efficiency
is optimized under each condition and its corresponding
value found. Upper limits for the efficiencies when the en-
gine operates with maximum power and with optimized
efficiency are reported for a specific asymmetric sawtooth
potential we studied.

Lastly, two points need to be mentioned in connection
with the validity of this work. Firstly, we have limited our
consideration to the overdamped motion of the Brownian
particle. It is worth to extend the study to the under-
damped regime. Blanter and Büttiker have already in-
vestigated how a non-uniform temperature can produce a
steady, directed current of particles in a periodic potential
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in the underdamped regime [24]. Secondly, we have ne-
glected energy transfer between the hot and cold reser-
voirs via kinetic energy due to the particle’s recrossing of
the boundaries. This is in contrast to the argument pre-
sented by Honduo and Sekimoto [15]. Our opinion is that
the specific environment in which the Brownian particle
is found determines the validity of neglecting such energy
transfer. In any case, this issue is controversial yet to be
resolved.
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